参考文献/References:
[1]Takeuchi F, Mcginnis R, Bourgeois S, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose[J]. PLoS Genet, 2009, 5(3): e1000433.
[2]Cha P C, Mushiroda T, Takahashi A, et al. Genomewide association study identifies genetic determinants of warfarin responsiveness for Japanese[J]. Hum Mol Genet, 2010, 19(23): 4735-44.
[3]SullivanKlose T H, Ghanayem B I, Bell D A, et al. The role of the CYP2C9Leu359 allelic variant in the tolbutamide polymorphism[J]. Pharmacogenetics, 1996, 6(4): 341-9.
[4]Wadelius M, Chen L Y, Lindh J D, et al. The largest prospective warfarin-treated cohort supports genetic forecasting[J]. Blood, 2009, 113(4): 784-92.
[5]Zhu Y, Shennan M, Reynolds K K, et al. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes[J]. Clin Chem, 2007, 53(7): 1199-205.
[6]Wei M, Ye F, Xie D, et al. A new algorithm to predict warfarin dose from polymorphisms of CYP4F2 , CYP2C9 and VKORC1 and clinical variables: Derivation in Han Chinese patients with non valvular atrial fibrillation[J]. Thromb Haemost, 2012, 107(6): 1083-91.
[7]Cen H J, Zeng W T, Leng X Y, et al. CYP4F2 rs2108622: a minor significant genetic factor of warfarin dose in Han Chinese patients with mechanical heart valve replacement[J]. Br J Clin Pharmacol, 2010, 70(2): 234-40.
[8]Xiong Y, Wang M, Fang K, et al. A systematic genetic polymorphism analysis of the CYP2C9 gene in four different geographical Han populations in mainland China[J]. Genomics, 2011, 97(5): 277-81.
[9]Limdi N A, Wadelius M, Cavallari L, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups[J]. Blood, 2010, 115(18): 3827-34.
[10]Lee M T, Chen C H, Chou C H, et al. Genetic determinants of warfarin dosing in the HanChinese population[J]. Pharmacogenomics 2009, 10(12): 1905-13.
[11]Wadelius M, Chen L Y, Eriksson N, et al. Association of warfarin dose with genes involved in its action and metabolism[J]. Hum Genet, 2007, 121(1): 23-34.
[12]Yuan H Y, Chen J J, Lee M T, et al. A novel functional VKORC1 promoter polymorphism is associated with interindividual and interethnic differences in warfarin sensitivity[J]. Hum Mol Genet, 2005, 14(13): 1745-51.
[13]Rieder M J, Reiner A P, Gage B F, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose[J]. N Engl J Med, 2005, 352(22): 2285-93.
[14]D′Andrea G, D′Ambrosio R L, Di Perna P, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the doseanticoagulant effect of warfarin[J]. Blood, 2005, 105(2): 645-9.
[15]Zhong S L, Yu X Y, Liu Y, et al. Integrating interacting drugs and genetic variations to improve the predictability of warfarin maintenance dose in Chinese patients[J]. Pharmacogenet Genomics, 2012, 22(3): 176-82.
[16]Yang L, Ge W, Yu F, et al. Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirementa systematic review and meta analysis[J]. Thromb Res, 2010, 125(4): e159-e66.
[17]Mcdonald M G, Rieder M J, Nakano M, et al. CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variant[J]. Mol Pharmacol, 2009, 75(6): 1337-46.
[18]Singh O, Sandanaraj E, Subramanian K, et al. Influence of CYP4F2 rs2108622 (V433M) on warfarin dose requirement in Asian patients[J]. Drug Metab Pharmacokinet, 2011, 26(2): 130-6.
[19]Scott S A, Khasawneh R, Peter I, et al. Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups[J]. Pharmacogenomics. 2010, 11(6): 781-91.
[20]Borgiani P, Ciccacci C, Forte V, et al. CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the Italian population[J]. Pharmacogenomics, 2009, 10(2): 261-6.
[21]范岚,彭向东,郭志华,等. CYP450氧化还原酶的遗传多态对药物代谢的影响[J]. 中国药理学通报,2009,25(9): 1131-3.
[21]Fan L,Peng X D,Guo Z H,et al. Genetic polymorphisms of cytochrome P450 oxidoreductase and its effect on drug metabolism[J].Chin Pharmacol Bull,2009,25(9): 1131-3.
[22]Zhang X, Li L, Ding X, et al. Identification of cytochrome P450 oxidoreductase gene variants that are significantly associated with the interindividual variations in warfarin maintenance dose[J]. Drug Metab Dispos. 2011, 39(8): 1433-9.
[23]Kohnke H, Sorlin K, Granath G, et al. Warfarin dose related to apolipoprotein E (APOE) genotype[J]. Eur J Clin Pharmacol, 2005, 61(5-6): 381-8.
[24]Kimura R, Miyashita K, Kokubo Y, et al. Genotypes of vitamin K epoxide reductase, gammaglutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients[J]. Thromb Res, 2007, 120(2): 181-6.
[25]Huang S W, Xiang D K, Wu H L, et al.[Impact of five genetic polymorphisms on interindividual variation in warfarin maintenance dose][J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2011, 28(6): 661-5.
[26]Gu Q, Kong Y, Schneede J, et al. VKORC11639G>A, CYP2C9, EPHX1691A>G genotype, body weight, and age are important predictors for warfarin maintenance doses in patients with mechanical heart valve prostheses in southwest China[J]. Eur J Clin Pharmacol, 2010, 66(12): 1217-27.
[27]胡永芳,周宏灏. CYP3A4,CYP3A5和MDR1基因多态性对环孢素处置的影响[J]. 中国药理学通报, 2005,21(3): 257-61.
[27]Hu Y F,Zhou H H. Contribution of genetic polymorphismsof the CYP3A4, CYP3A5 and MDR1 genes to cyclosporine disposition[J]. Chin Pharmacol Bull,2005,21(3): 257-61.
[28]Wadelius M, Sorlin K, Wallerman O, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors[J]. Pharmacogenomics J, 2004, 4(1): 40-8.
[29]Rajewsky N. microRNA target predictions in animals[J]. Nat Genet, 2006, 38 Suppl: S8-S13.
[30]Miao L, Yang J, Huang C, et al. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients[J]. Eur J Clin Pharmacol, 2007, 63(12): 1135-41.
[31]Huang S W, Chen H S, Wang X Q, et al. Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients[J]. Pharmacogenet Genomics, 2009, 19(3): 226-34.
[32]You J H, Wong R S, Waye M M, et al. Warfarin dosing algorithm using clinical, demographic and pharmacogenetic data from Chinese patients[J]. J Thromb Thrombolysis, 2011, 31(1): 113-8.
[33]Gage B F, Eby C, Johnson J A, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin[J]. Clin Pharmacol Ther, 2008, 84(3): 326-31.
[34]Klein T E, Altman R B, Eriksson N, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data[J]. N Engl J Med, 2009, 360(8): 753-64.
[35]Cho H J, On Y K, Bang O Y, et al. Development and comparison of a warfarindosing algorithm for Korean patients with atrial fibrillation[J]. Clin Ther, 2011, 33(10): 1371-80.
[36]Ohno M, Yamamoto A, Ono A, et al. Influence of clinical and genetic factors on warfarin dose requirements among Japanese patients[J]. Eur J Clin Pharmacol, 2009, 65(11): 1097-103.