[1]王 敏,余 薇,查文良.自噬和线粒体自噬在糖尿病心肌病中的作用研究进展[J].中国药理学通报,2018,(10):1337-1340.[doi:10.3969/j.issn.1001-1978.2018.10.002]
 WANG Min,YU Wei,ZHA Wen-liang.Research progress of autophagy and mitochondrial autophagy in diabetic cardiomyopathy[J].Chinese Pharmacological Bulletin,2018,(10):1337-1340.[doi:10.3969/j.issn.1001-1978.2018.10.002]
点击复制

自噬和线粒体自噬在糖尿病心肌病中的作用研究进展()
分享到:

《中国药理学通报》[ISSN:/CN:]

卷:
期数:
2018年10期
页码:
1337-1340
栏目:
讲座与综述
出版日期:
2018-09-26

文章信息/Info

Title:
Research progress of autophagy and mitochondrial autophagy in diabetic cardiomyopathy
文章编号:
1001-1978(2018)10-1337-04
作者:
王 敏余 薇查文良
湖北科技学院药学院,湖北 咸宁 437100
Author(s):
WANG Min YU Wei ZHA Wen-liang
School of Pharmacy, Hubei University of Science and Technology, Xianning Hubei 437100, China
关键词:
糖尿病心肌病 氧化应激 自噬 线粒体自噬 凋亡 AMPK mTORC1 Parkin PINK1 NIX
Keywords:
diabetic cardiomyopathy oxidative stress autophagy mitophagy apoptosis AMPK mTORC1 Parkin PINK1 NIX
分类号:
R-05; R329.24; R542.2; R587.1; R587.2
DOI:
10.3969/j.issn.1001-1978.2018.10.002
文献标志码:
A
摘要:
近年来,由于社会老龄化及肥胖发病率的不断升高,糖尿病患者的数量也逐年上升,然而,约一半以上的糖尿病患者死于糖尿病心血管病并发症。线粒体质量控制与心功能关系密切,高糖可致心肌细胞内线粒体受损而发生心功能障碍,因此,及时有效降解受损线粒体能抑制糖尿病心肌病的发生。线粒体自噬具有清除功能障碍的线粒体、控制线粒体质量、保障细胞内环境稳定的作用。该文通过介绍参与线粒体自噬的蛋白分子及信号通路,对自噬与线粒体自噬在糖尿病心肌病中的作用做一综述。
Abstract:
In recent years, due to the aging of society and a rising incidence of obesity rate, the number of diabetic patients is rising year by year.Approximately, more than half of the diabetic patients died from cardiovascular complications of diabetes.Abundant in heart, mitochondria serve as energy resources, so its dysfunction may contribute to myocardial cell damage.Hyperglycemia can cause damage to the inner mitochondria of heart muscle, thus timely and effective degradation of damaged mitochondria reduces the incidence of diabetic cardiomyopathy.Mitophagy can remove dysfunctional mitochondria, control mitochondrial mass and ensure environmental stability in cells.In this review, we summarize the role of autophagy and mitophagy in diabetic cardiomyopathy via introducing some proteins and pathways involved in mitophagy.

参考文献/References:

[1] Ogurtsova K, da Rocha Fernandes J D, Huang Y, et al.IDF diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040[J].Diabetes Res Clin Pract, 2017, 128: 40-50.
[2] Wang X, West J A, Murray A J, et al.Comprehensive metabolic profiling of age-related mitochondrial dysfunction in the high-fat-fed ob/ob mouse heart[J].J Proteome Res, 2015, 14(7): 2849-62.
[3] Anderson E J, Kypson A P, Rodriguez E, et al.Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart[J].J Am Coll Cardiol, 2009, 54(20): 1891-8.
[4] Zhang Y, Babcock S A, Hu N, et al.Mitochondrial aldehyde dehydrogenase(ALDH2)protects against streptozotocin-induced diabetic cardiomyopathy: role of GSK3beta and mitochondrial function[J].BMC Med, 2012, 10: 40.
[5] Okamoto K, Kondo-Okamoto N, Ohsumi Y.Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy[J].Dev Cell, 2009, 17(1): 87-97.
[6] Callegari S, Oeljeklaus S, Warscheid B, et al.Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects[J].Autophagy, 2017, 13(1): 201-11.
[7] Chen M, Chen Z, Wang Y, et al.Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy[J].Autophagy, 2016, 12(4): 689-702.
[8] Wu S, Lu Q, Wang Q, et al.Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo[J].Circulation, 2017, 136(23): 2248-66.
[9] Kobayashi S, Liang Q.Autophagy and mitophagy in diabetic cardiomyopathy[J].Biochim Biophys Acta, 2015, 1852(2): 252-61.
[10] Kubli D A, Gustafsson A B.Unbreak my heart: targeting mitochondrial autophagy in diabetic cardiomyopathy[J].Antioxid Redox Signal, 2015, 22(17): 1527-44.
[11] Xie Z, Lau K, Eby B, et al.Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice[J].Diabetes, 2011, 60(6): 1770-8.
[12] Xu X, Kobayashi S, Chen K, et al.Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes[J].J Biol Chem, 2013, 288(25): 18077-92.
[13] He C, Zhu H, Li H, et al.Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes[J].Diabetes, 2013, 62(4): 1270-81.
[14] Kanamori H, Takemura G, Goto K, et al.Autophagic adaptations in diabetic cardiomyopathy differ between type 1 and type 2 diabetes[J].Autophagy, 2015, 11(7): 1146-60.
[15] Hou X, Hu Z, Xu H, et al.Advanced glycation endproducts trigger autophagy in cadiomyocyte via RAGE/PI3K/AKT/mTOR pathway[J].Cardiovasc Diabetol, 2014, 13: 78.
[16] French C J, Tarikuz Z A, McElroy-Yaggy K L, et al.Absence of altered autophagy after myocardial ischemia in diabetic compared with nondiabetic mice[J].Coron Artery Dis, 2011, 22(7): 479-83.
[17] Sciarretta S, Zhai P, Shao D, et al.Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome[J].Circulation, 2012, 125(9): 1134-46.
[18] Xu X, Hua Y, Nair S, et al.Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation[J].J Mol Cell Biol, 2013, 5(1): 61-3.
[19] Munasinghe P E, Riu F, Dixit P, et al.Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway[J].Int J Cardiol, 2016, 202: 13-20.
[20] Volkers M, Doroudgar S, Nguyen N, et al.PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity[J].EMBO Mol Med, 2014, 6(1): 57-65.
[21] Tang Y, Liu J, Long J.Phosphatase and tensin homolog-induced putative kinase 1 and Parkin in diabetic heart: role of mitophagy[J].J Diabetes Investig, 2015, 6(3): 250-5.
[22] Scheele C, Nielsen A R, Walden T B, et al.Altered regulation of the PINK1 locus: a link between type 2 diabetes and neurodegeneration[J]? FASEB J, 2007, 21(13): 3653-65.
[23] 左 玮, 梅 丹.高血糖通过抑制线粒体自噬加重大鼠脑缺血/再灌注损伤[J].中国药理学通报, 2016,32(6): 846-53.
[23] Zuo W, Mei D.Hyperglycemia aggravated cerebral ischemia/reperfusion injury by inhibiting mitophagy[J].Chin Pharmacol Bull, 2016,32(6):846-53.
[24] Kubli D A, Zhang X, Lee Y, et al.Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction[J].J Biol Chem, 2013, 288(2): 915-26.
[25] 高蓓蕾, 张国勇, 余文军, 等.Parkin介导的线粒体自噬在高糖高脂导致的心肌细胞损伤中的保护作用[J].心脏杂志, 2017(4):382-8.
[25] Gao B L, Zhang G Y, Yu W J, et al.Protective role of Parkin-mediated mitophagy in cardiomyocyte injury induced by high glucose and high fat[J].Chin Heart J, 2017(4):382-8.

相似文献/References:

[1]董世芬,洪缨,孙建宁.糖尿病心肌病与过氧化物增殖体激活受体[J].中国药理学通报,2010,(08):0.
 DONG Shi fen,HONG Ying,SUN Jian ning.Relationship between diabetic cardiomyopathy and peroxisome proliferatorsactivated receptors[J].Chinese Pharmacological Bulletin,2010,(10):0.
[2]刘慰华,黄河清,邓艳辉,等.黄连素对糖尿病肾损伤大鼠肾功能、氧化应激、肾脏醛糖还原酶的影响[J].中国药理学通报,2008,(07):0.
 LIU Wei hua,HUANG He qing,DENG Yan hui,et al.Effects of berberine on renal function, oxidative stress and renal aldose reductase in rats with diabetic nephropathy[J].Chinese Pharmacological Bulletin,2008,(10):0.
[3]符丽娟,王洪新,刘婉珠.坎地沙坦对糖尿病大鼠心肌细胞凋亡及Fas和FasL表达的影响[J].中国药理学通报,2009,(10):0.
 FU Li juan,WANG Hong xin,LIU Wan zhu.Efects of candesartan on apoptosis and expressions of Fas and FasL in the myocardium cell of diabetic rats[J].Chinese Pharmacological Bulletin,2009,(10):0.
[4]郭秋平,肖百全,杨 威,等.格列本脲对GK大鼠心肌的保护作用实验研究[J].中国药理学通报,2011,(06):882.
 GUO Qiu-ping,XIAO Bai-quan,YANGWei,et al.Protective effect research of glibenclam ide on the myocardium ofGK rats [J].Chinese Pharmacological Bulletin,2011,(10):882.
[5]黄 鑫,李宾公,郑泽琪,等. 神经调节蛋白-1对糖尿病心肌病大鼠心肌重构的影响[J].中国药理学通报,2011,(11):1532.
 HUANG Xin,LI Bin-gong,ZHENG Ze-qi,et al. Effects of neuregulin-1on ventricular rem olding in experim ental diabetic cardiomyopathy [J].Chinese Pharmacological Bulletin,2011,(10):1532.
[6]张一弛,解砚英,牟艳玲,等.葛根素对糖尿病大鼠心功能及血清TNF-α水平的影响[J].中国药理学通报,2011,(12):1700.
 ZHANG Yi-chi,XIE Yan-ying,MOU Yan-ling,et al.Effects of puerarin on the heart function and the level of serum TNF-αindiabetic rats [J].Chinese Pharmacological Bulletin,2011,(10):1700.
[7]金海燕,钟久昌,宋 蓓,等.替米沙坦对高血压大鼠血管ACE2表达及氧化应激水平的影响[J].中国药理学通报,2012,(01):54.
 JIN Haiyan,ZHONG Jiuchang,SONG Bei,et al.Effectsof Telm isartan on vascular ACE2expression and oxidative stress levels in spontaneously hypertensive rats[J].Chinese Pharmacological Bulletin,2012,(10):54.
[8]吴铿,游琼,黄瑞娜,等.柚皮苷调控心肌PPARγ表达对实验性2型糖尿病 心肌病大鼠模型心肌损伤的防治作用[J].中国药理学通报,2012,(04):526.
 WU Keng,YOU Qiong,HUANG Rui na,et al.Protective effects of Naringin on experimental rats model of Type 2 diabetic cardiomyopathy via regulation of PPARγ signaling[J].Chinese Pharmacological Bulletin,2012,(10):526.
[9]路婷婷,陈亚泽,卢涛,等.紫外线的皮肤损伤机制及具有紫外线防护作用的天然产物的研究进展[J].中国药理学通报,2012,(12):1655.
 LU Ting ting,CHEN Ya ze,LU Tao,et al.Mechanism of UV damage and the protective effect of natral products against UV damage[J].Chinese Pharmacological Bulletin,2012,(10):1655.
[10]董世芬,洪缨,汪瑞祺,等.小檗碱对实验性2型糖尿病心肌病大鼠模型心脏保护作用研究[J].中国药理学通报,2013,(09):1216.
 DONG Shi fen,HONG Ying,WANG Rui qi,et al.Berberine attenuates cardiac dysfunction in experimental type 2 diabetic cardiomyopathy rat model[J].Chinese Pharmacological Bulletin,2013,(10):1216.
[11]刘 涛,李 晶,鲍翠玉.线粒体损伤与糖尿病心肌病发病关系的研究进展[J].中国药理学通报,2018,(04):456.[doi:10.3969/j.issn.1001-1978.2018.04.004]
 LIU Tao,LI Jing,BAO Cui-yu.Research progress of mitochondria in diabetic cardiomyopathy[J].Chinese Pharmacological Bulletin,2018,(10):456.[doi:10.3969/j.issn.1001-1978.2018.04.004]

备注/Memo

备注/Memo:
收稿日期:2018-06-15,修回日期:2018-07-26
基金项目:国家自然科学基金资助项目(No 81500296); 湖北科技学院临床医学重点(培育)学科专项基金(No LCZX201506); 湖北科技学院药学重点学科专项科研项目(2018-19XZY17)
作者简介:王 敏(1994-),女,硕士生,研究方向:心血管药理学,E-mail:254332190@qq.com;
查文良(1980-),男,博士,副教授,硕士生导师,研究方向:糖尿病及其并发症研究,通讯作者,E-mail:xyzwl800@163.com
更新日期/Last Update: 2018-08-26